3.61 \(\int \frac {1}{\sqrt {a x+b x^3}} \, dx\)

Optimal. Leaf size=92 \[ \frac {\sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt [4]{b} \sqrt {a x+b x^3}} \]

[Out]

(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))*EllipticF(sin(2*arctan
(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^
(1/4)/b^(1/4)/(b*x^3+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2011, 329, 220} \[ \frac {\sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt [4]{b} \sqrt {a x+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a*x + b*x^3],x]

[Out]

(Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/
a^(1/4)], 1/2])/(a^(1/4)*b^(1/4)*Sqrt[a*x + b*x^3])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a x+b x^3}} \, dx &=\frac {\left (\sqrt {x} \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {a+b x^2}} \, dx}{\sqrt {a x+b x^3}}\\ &=\frac {\left (2 \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {a x+b x^3}}\\ &=\frac {\sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt [4]{b} \sqrt {a x+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 49, normalized size = 0.53 \[ \frac {2 x \sqrt {\frac {b x^2}{a}+1} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {b x^2}{a}\right )}{\sqrt {x \left (a+b x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a*x + b*x^3],x]

[Out]

(2*x*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)])/Sqrt[x*(a + b*x^2)]

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{\sqrt {b x^{3} + a x}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(b*x^3 + a*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{3} + a x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(b*x^3 + a*x), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 108, normalized size = 1.17 \[ \frac {\sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{\sqrt {b \,x^{3}+a x}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a*x)^(1/2),x)

[Out]

(-a*b)^(1/2)/b*((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-1/(-a*
b)^(1/2)*b*x)^(1/2)/(b*x^3+a*x)^(1/2)*EllipticF(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{3} + a x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*x^3 + a*x), x)

________________________________________________________________________________________

mupad [B]  time = 5.03, size = 40, normalized size = 0.43 \[ \frac {2\,x\,\sqrt {\frac {b\,x^2}{a}+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{2};\ \frac {5}{4};\ -\frac {b\,x^2}{a}\right )}{\sqrt {b\,x^3+a\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x + b*x^3)^(1/2),x)

[Out]

(2*x*((b*x^2)/a + 1)^(1/2)*hypergeom([1/4, 1/2], 5/4, -(b*x^2)/a))/(a*x + b*x^3)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a x + b x^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a*x)**(1/2),x)

[Out]

Integral(1/sqrt(a*x + b*x**3), x)

________________________________________________________________________________________